Investigação do efeito da modificação da hematita por óxidos metálicos que atuam em diferentes funções para o aumento da atividade foto-eletrocatalítica
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
<span style="font-weight: 400;">A fotoeletrólise da água, ou <span style="font-weight: 400;">photoelectrochemical <span style="font-weight: 400;">(PEC)<span style="font-weight: 400;"> water splitting, <span style="font-weight: 400;">a partir da energia solar é uma estratégia promissora para a produção de gás hidrogênio e substituir a utilização de combustíveis fósseis. Neste cenário, a hematita (α-Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">) é considerada um excelente material de fotoanodo devido ao seu <span style="font-weight: 400;">band gap<span style="font-weight: 400;"> adequado (1,9 ~ 2,2 eV), e por ser formada por elementos abundantes, ter baixa toxicidade e alta estabilidade química. Entretanto, baixo tempo de vida dos portadores de cargas, a baixa condutividade elétrica e lenta cinética de transferência de carga na interface eletrodo/eletrólito resultam em baixa eficiência de conversão de energia. A modificação da superfície da hematita por deposição de cocatalisadores e/ou por camadas de passivação, e modificações do<span style="font-weight: 400;"> bulk<span style="font-weight: 400;"> por nanaoestruturação com ATO (óxido de estanho e antimônio) são estratégias interessantes para superar essas limitações. Neste trabalho, filmes de hematita foram preparados a partir da eletrodeposição catódica de ferro metálico em substratos de óxido de estanho dopados com flúor (FTO) seguidos por tratamento térmico (TT). Inicialmente foram otimizados os parâmetros de síntese do filme de hematita: temperatura de tratamento térmico (600°C, 650°C e 700°C) e carga de Fe metálico depositado (300, 500 e 1000 mC). A melhor resposta fotoeletroquímica foi obtida para o filme preparado com 500 mC de Fe eletrodepositado e tratado termicamente a 650°C (TT), o qual apresentou densidade de fotocorrente de 0,83 mA cm<span style="font-weight: 400;">-2<span style="font-weight: 400;"> a 1,23 V (<span style="font-weight: 400;">vs<span style="font-weight: 400;">. ERH). A modificação superficial do filme de hematita com Sn (Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/ Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">) foi feita a partir da eletrodeposição de Sn metálico sobre o filme de Fe metálico seguido de TT. Já a modificação com NiOOH foi feita por eletrodeposição anódica sobre o filme de hematita (Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/NiO<span style="font-weight: 400;">x<span style="font-weight: 400;">). Ambas as estratégias de modificação foram avaliadas individualmente e foram posteriormente combinadas no filme Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">/NiO<span style="font-weight: 400;">x<span style="font-weight: 400;">. As modificações avaliadas tiveram baixa influência no <span style="font-weight: 400;">band gap<span style="font-weight: 400;"> dos filmes e em suas propriedades morfológicas-estruturais. Os experimentos de PEC foram realizados em eletrólito alcalino com e sem iluminação solar simulada. Os resultados das curvas de densidade de fotocorrente vs. potencial mostraram que as densidades de fotocorrente dos filmes Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">, Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/NiO<span style="font-weight: 400;">x<span style="font-weight: 400;"> e Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/ Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;"> /NiO<span style="font-weight: 400;">x<span style="font-weight: 400;"> aumentaram 48%, 22% e 60%, respectivamente, a 1,23 V (<span style="font-weight: 400;">vs.<span style="font-weight: 400;"> EHR) em comparação ao filme de hematita não modificado. A partir de ensaios de Mott-Schottky, transiente de potencial de circuito aberto e espectroscopia de impedância fotoeletroquímica, pode-se constatar que a melhora na performance PEC observada para os filmes modificados está associado a passivação dos estados superficiais, aumentando o tempo de vida e diminuindo a recombinação de cargas. Através de experimentos realizados na presença de H<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">2 <span style="font-weight: 400;">no eletrólito, um captador de buracos, verificou-se que as modificações superficiais melhoraram a eficiência de injeção de cargas através interface eletrodo/eletrólito. Testes de estabilidade de fotoeletrólise com simulador solar e a 1,6 V <span style="font-weight: 400;">vs.<span style="font-weight: 400;"> ERH em KOH 1,0 mol L<span style="font-weight: 400;">-1<span style="font-weight: 400;"> demonstraram que os filmes modificados permaneceram estáveis por pelo menos 15 h. Além da modificação superficial, avaliou-se o efeito da modificação do <span style="font-weight: 400;">bulk<span style="font-weight: 400;"> da hematita com nanopartículas de óxido de estanho e antimônio (ATO) na melhora da performance do fotoanodo. O filme ATO-/Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;"> apresentou aumento de 50% na densidade de fotocorrente a 1,23V (<span style="font-weight: 400;">vs.<span style="font-weight: 400;"> ERH), em comparação ao filme de hematita não modificado. Análises de MS demonstraram que a adição da subcamada de ATO promoveu aumento da densidade de portadores de carga indicando a dopagem dos filmes com o antimônio (Sb) proveniente da subcamada. Além disso, a modificação com ATO diminuiu consideravelmente a resistência total, aumentou as eficiências de separação e injeção de carga devido à diminuição da resistência do <span style="font-weight: 400;">bulk<span style="font-weight: 400;">. Assim, em suma, as modificações aplicadas nos fotoanodos de hematita apresentaram melhora nas propriedades fotoeletroquímicas dos filmes de hematita.
<span style="font-weight: 400;">The photoelectrochemical (PEC) water splitting for hydrogen production using solar energy is one of the most promising strategies to overcome the global fossil fuel dependence. In this scenario, Hematite (α-Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">) is considered an excellent photoanode material for PEC due to its suitable band gap (1.9 ~ 2.2 eV), earth-abundant elements, low toxicity and good chemical stability. However, the short lifetime of photogenerated carriers, low electrical conductivity and slow charge transfer kinetics at electrode/electrolyte interface results in low energy conversion to hydrogen efficiency. The surface modification of hematite by cocatalyst deposition and/or passivation layers and bulk modification by ATO nanostructuring are interesting strategies to overcome these limitations. In this work, hematite films were prepared by cathodic electrodeposition of metallic iron on fluoride-doped tin oxide (FTO) substrates followed by heat treatment. Initially, hematite film synthesis parameters were optimized: The parameters studied were thermic treatment temperature (600 ° C, 650 ° C and 700 ° C) and deposited metallic Fe load (300, 500 and 1000 mC). PEC experiments were performed on alkaline electrolyte in the absence and under solar simulated illumination. The best photoelectrochemical response was obtained for the film prepared with 500 mC electrodeposited Fe (0) annealed at 650 °C, which showed photocurrent density of 0.83 mA cm<span style="font-weight: 400;">-2<span style="font-weight: 400;"> at 1.23 V (<span style="font-weight: 400;">vs.<span style="font-weight: 400;"> RHE). The surface modification of the hematite film by Sn (Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">) was made by Sn (0) electrodeposition on the Fe (0) film before thermic treatment. The modification by NiOOH was made by anodic electrodeposition directly on the hematite film (Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/NiO<span style="font-weight: 400;">x<span style="font-weight: 400;">). Both modification strategies were evaluated individually and were later combined in Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">/NiO<span style="font-weight: 400;">x<span style="font-weight: 400;"> film. The modifications evaluated had low influence on the band gap of the films and on their morphological and structural properties. The photocurrent-voltage measurements results showed that photocurrent densities of Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">, Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/NiO<span style="font-weight: 400;">x<span style="font-weight: 400;"> and Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;">/Fe<span style="font-weight: 400;">x<span style="font-weight: 400;">Sn<span style="font-weight: 400;">1-x<span style="font-weight: 400;">O<span style="font-weight: 400;">4<span style="font-weight: 400;">/ NiOx films increased by 48%, 22% and 60%, respectively, at 1.23 V (vs. RHE) compared to bare hematite photoanode. From Mott-Schottky analysis, open circuit potential transient and photoelectrochemical impedance spectroscopy experiments, it was verified that the PEC performance improvement observed for the modified films is associated with surface states passivation, that increase charge carrier lifetime, and hence decrease the charge recombination. From experiments performed in the presence of H<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">2<span style="font-weight: 400;"> at the electrolyte it was possible to understand that the surface modifications improved the charge injection efficiency at the interface. Photoelectrolysis stability tests performed at 1.6 V vs. ERH in 1.0 mol L<span style="font-weight: 400;">-1 <span style="font-weight: 400;">KOH demonstrated that the modified films remained stable for at least 15 h. In addition to surface modification investigation, the effect of hematite bulk modification by tin oxide antimony (ATO) nanoparticles were evaluated. The ATO/Fe<span style="font-weight: 400;">2<span style="font-weight: 400;">O<span style="font-weight: 400;">3<span style="font-weight: 400;"> film prepared by 200 uL of the modifier solution showed an increase of 50% increase in the photocurrent density at 1.23V (vs. RHE) compared to bare hematite film. MS analysis showed that the addition of the ATO sublayer leaded to an increase at charge carrier density indicating hematite doping by antimony (Sb) from the ATO sublayer. In addition, ATO modification considerably decreased the total resistance, increased the charge separation and injection efficiencies due to the decreased at the bulk resistance. Thus, from the obtained results, the evaluated hematite photoanode modifications strategies improved the optoelectronic and photoelectrochemical properties of hematite films.